Hoje irei falar sobre um assunto que muitos alunos odeiam e não entendem: Logaritmo!
Antes de mais nada, quero pedir aos caros leitores que guardem o valor de cada log apresentado abaixo:
log 1 = 0
log 2 = 0,30
log 3 = 0,48
log 4 = 0,60
log 5 = 0,70
log 6 = 0,78
log 7 = 0,85
log 8 = 0,90
log 9 = 0,95
Antes de mais nada teremos que colocar o 4567 em notação científica (caso os caros leitores não se lembram de como colocar em notação científica, é só clicar neste link que os levará diretamente à explicação de notação científica: http://culturaexatas.blogspot.com.br/2013/08/notacao-cientifica.html).
4567 = 4,567 x 10 3
O número exponencial é 3, já estamos a meio caminho da solução. Sempre teremos que memorizar o log do primeiro número que no nosso caso é o 4, log de 4 é 0,60.
Realizando a somatória = número exponencial + log do primeiro número.
3+ 0,60 = 3,60
Portanto log de 4567 é 3,60
Conferindo o resultado em uma calculadora obtivemos 3,65963101161.
Lembrando aos caros leitores que a diferença ocorre da segunda casa decimal em diante, isto nos mostra que o método que empregamos é valido.
Agora apresentarei a vocês um método mais preciso, chamado de Interpolação Linear.
Vamos calcular logaritmo de 2,5.
O número 2,5 está entre o 2 e o 3, então veremos na tabela o logaritmo de 2 e 3.
log2 = 0,30
log3 = 0,48.
Para que o 2,5 possa chegar ao três, nos falta 0,5 (1/2), então pegaremos este valor (1/2) para usarmos na seguinte fórmula.
log x = logx - (logx - logy)/2
logx será o log maior, que neste caso é o log 3 = 0,48, e o logy será o log menor, que neste caso é log2 = 0,30. O 1/2 neste caso é a quantidade que o número dado (2,5) falta para chegar no número maior (3,0).
log2,5 = log3 - (log3-log2)/2
log2,5 = 0,48 - (0,48 - 0,30)/2
log2,5 = 0,48 - (0,18)/2
log2,5 = 0,48 - 0,09
log2,5 = 0,39
Pela calculadora obtivemos log2,5 = 0,397940008
Vamos complicar mais um pouquinho?
Vamos calcular o logaritmo de 2300.
Lembrando que o número 2300 está entre o 2000 e o 3000, então usaremos a primeira explicação dada para calcularmos os logaritmos de 2000 e 3000.
log2000 = ??????
2000 = 2x10 3
Guardemos o número exponencial (3), e faremos o logaritmo de 2 que é 0,30.
3 + 0,30 = 3,30
Portanto, log2000 = 3,30
log3000 = ????
3000 = 3x10 3
3 + 0,48 = 3,48
Portanto, log3000 = 3,48
log2300 = log3000 - 7*(log3000 - log2000)/10
log2300 = 3,48 - 7*(3,48 - 3,30)/10
log2300 = 3,48 - 7*(0,18)/10
log2300 = 3,48 - 1,26/10
log2300 = 3,48 - 0,126
log2300 = 3,354
Pela calculadora obtivemos log2300 = 3,361727836
Para mais explicações sobre logaritmos acessem:
http://culturaexatas.blogspot.com.br/2013/09/logaritmos.html
Pessoal, espero que tenham gostado e curtido, fiquem a vontade para deixar comentários e opiniões!
Ótimo método, você poderia nos dar um exemplo também dos logs de 11 à 19?
ResponderExcluirDá pra fazer pela diferença do 10 pra 20 e fazer proporcional a distância do numero do 10 ao 20. Tipo assim, 15 = log20 - 5/10(log20-log10).
Excluirlog15 = 3 - 5/10(1)= 2.5 ? Posso ter errado alguma conta mas acho que a ideia é essa. Abraço !
Senx=1
ResponderExcluir